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1.0 SUMMARY

An existing computer program, the Axisymmetric Diffuser Duct Code (ADD code),

which calculates compressible turbulent swirling flow through axisymmetric ducts

has been modified to permit calculation of flows through small gas turbine ducts

with struts, guide vanes and large degrees of turning. The code improvements

include a new coordinate generator, an eiid-wall loss model, and a generalized geometry

capability to describe struts and guide vanes in ducts which turn more than 90 degrees.

An improved output format has been developed to provide the solution on any arbitrary

plane in the duct and an extensive literature survey of calculation procedures used

in gas turbine technology has been completed which suggests future improvements in

the computer code. Calculations are presented for the flow through the AGT101 small

gas turbine inlet duct and turbine exhaust diffuser which demonstrate the ADD code

modifications implemented in the present investigation. The computed results compare

favorably with experimental results.

1
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2.0 INTRODUCTION

The NASA-Lewis Research Center and the Department of Energy is conducting a

program to develop turbine technology for automotive gas turbine application.

Development of the AGT101 Engine in the Automotive Gas Turbine Engine Program re-

quires not only a component test program, but also the development of accurate

and reliable analyses to support the program. Thus, a computer analysis for pre-

dicting the turbulent swirling compressible flow in axisymmetric ducts with struts

and guide vanes for application to the design of small gas turbine engines would

support this program and would be suitable for more general use in small engine design

and development.

The Axisymmetric Diffuser Duct analysis (ADD code) developed by Anderson

(Refs. 1 and 2) has been shown to produce accurate and reliable calculations of

flows in gas turbine engine components. It has been successfully applied to pre-

dicting the performance of the subsonic portion of mixed compression inlets

(Bowditch Ref. 3) and to predicting the pressure recovery of high Mach number dif-

fusers (Povinelli Ref. 4). 	 Additional applications have been to straight wall

annular diffusers, effects of inlet distortion on diffuser performance, and mixing

to two coaxial streams, (Anderson Ref. 5) and further calculations were made for

swirling flow in a precombustion diffuser and for an inlet with inlet guide vanes
(Barber, et al., Ref. 6). Finally, the ADD code has been applied to the solution of

flows in small axial flow turbines (McLallin and Kofskey Ref. 7) and recently, it has

been modified to treat flows with a small separation bubble, flows with large com-

pressible axisymmetric s,:reamline curvatures, and nonequilibrium turbulent flows

which require a two equation (k, e) turbulence model (Anderson and Edwards Ref. 8).

The ADD code, with some modifications, can be applied to the solution of flows

in annular ducts which have significant radial flow components as found in small

gas turbine engines. Although the basic solution algorithm used to solve the vis-

cous flow has no restrictions as to flow turning, the algorithm used to calculate

the coordinate mesh is limited to ducts which make less than a 90 deg turn. A new

algorithm, developed by Davis (Ref. 9), has no such restriction. In addition, the

Davis method employs a second order integration formula which exactly integrates the

singularities (poles) which occur at each corner of the n-sided polygon used to

represent the duct with a Schwartz-Christoffel transformation. This method is used

to generate a coordinate mesh which is constructed from the streamlines and potential

lines of the plane potential flow solution obtained from the Schwartz--Christoffel

transformation. Because of the exact treatment of the poles, this new algorithm

can be expected to be more accurate (Sridhar and Davis Ref. 10). Therefore, the

first part of the analysis section deals with the incorporation of the Davis algor-

ithm into the ADD code. Comparisons are made with the original coordinate generator

and cases are calculated for the flow through two ducts typical of small gas turbine

engines and results are compared with experimental data.

2	 O
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In the present approach strut and guide vane effects appear in the governing

turbulent flow equations as gap-averaged a-priori body forces. These body forces

are obtained using blade element theory which treats the mainstream flow through

the cascade as if it were two dimensional and inviscid (see Johnson and Bullock,

Ref. 11, and Barber, et al., Ref. 6^ The airfoil section cascade performance is

obtained using empirical data. The present version of the ADD code contains these

empirical relations for NACA 65 series airfoils and NACA four digit series airfoils

(Abbott Ref. 12). This procedure using the ADD code, has been shown by Barber, et al.

(Ref. 6) to produce good predictions of the flow field through a compressor inlet

guide vane. In particular, the exit flow angles, the mean streamwise velocities,

and the mean cross flow velocities in the endwall boundary layer were shown to be

modeled quite well. The loss mechanism, however, only accounted for blade profile

loss and end-wall friction loss. A number of authors, Hanley (Ref. 13), Papailiou,

et al. (Ref. 14) and Koch and Smith (Ref. 15) have developed endwall loss models to

account for three dimensional effects in the blade passage. The second part of the

analysis section describes a simple model, based on the Papailiou correlation, which

has been incorporated into the code.

The initial version of the ADD code had limited applicability to small gas turbine

ducts with struts and guide vanes because the code used cylindrical (r, x, ^) coordinates

to describe the strut geometry. In this, the blade centerline was located using the

axial distance as an independent variable and the blade chord, thickness, and camber

were described using the radial distance r as the stacking line (independent -!ariable).

Clearly, this procedure is inadequate to treat small gas turbine ducts which may turn

more than 90 deg because data may be multivalued along either r or z. The third part

of the analysis section deals with a new approach to describe the duct and blade geometry.

This new generalized analysis will be demonstrated by calculating the flow through two

ducts, typical of small radial gas turbine engines, which have supporting struts or

guide vanes.

The fourth part of the analysis section deals with a modified output format. In

the initial version of the code the solution, which is calculated in the (s,n) coor-

dinate system where s is along inviscid streamlines and n along potential lines, is

printed along coordinate lines (s - const). Experimental data is seldom available

along these coordinate lines so that comparison with calculated results is difficult.

The fourth part of the analysis deals with the interpolation and resolution of the

vector and tensor quantities along any arbitrary experimental data line.

Small gas turbine ducts with struts and guide vanes generate three dimensional

flows which in gas turbine technology are called secondary flows. In addition,

rotors and stators generate tip leakage effects due to the large pressure difference

across the blades. These secondary flows produce two principal effects on the gap

average flows as pointed out by Square and Winter (Ref. 16). The first effect is

called "overturning" and occurs in the endwall boundary layer region where the flow

turns more than would be predicted by a simple two dimensional analysis or data

3	 '`/
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correlations. The second effect is called "corner loss" and is produced by the

corner flow in the form of a vortex roll up and/or corner stall. At the present

time the ADD code does not model these important three dimensional effects although

it has demonstrated that some important features of the flow through ducts with

struts and guide vanes such as "overturning" are modeled (see Barber, et al. Ref. 6).

A large body of literature exists which attempts to model these effects in axial

flow compressors using gap averaged equations similar to the equations used in the

ADD code. Therefore, the last part of the analysis deals with a literature survey

of attempts to model these endwall secondary flow effects as they occur in turbo-

machinery with a view toward incorporating or developing a model for use in the ADD

code in the future.

F •

4



C

R81-915395-12

3.0 ANALYSIS

3.1 Coordinate Generator

An ideal coordinate system should facilitate the formulation and numerical

solution of the viscous flow solver. It should ease the expression of boundary

conditions and minimize the truncation error due to difference approximations of

the flow equations. In addition, the analysis on which the ADD code is based

required that the coordinate system be orthogonal and that it be a first approxima-

tion to the viscous flow through the duct since the flow curvature is assumed to be

the same as that of the streamwise coordinate lines (see Anderson (Ref. 1)). A two

dimensional orthogonal coordinate system, suitable for the ADD code, can always be

constructed from a potential flow solution by setting the normal coordinate equal

to the stream function and the streamwise coordinate equal to the velocity potential.

For plane flow, conformal mapping techniques are ideal Lecause it allows solution

of the inverse problem by direct means. That is (x(s,n), y(s,r,)) rather than (s(x,y),

n(x,y)) can be calculated directly where (x,y) is the Cartesian system and (s,n)

curvilinear systen. For many ducts, this plane flow solution serves as a suffi-

ciently good approximation to the flow curvature of axisymmetric flow. However,

for certain cases where this approximation is insufficient, a technique has been

developed by Anderson and Edwards (Ref. 8) to obtain axisymmetric streamline curva-

tures for use with the coordinate system derived from plane potential flow. Thus,

coordinate grids based on conformal mapping appear ideal for use in the ADD code.

Of the many mapping functions possible, one based on the Schwartz-Christoffel

transformation is ideal because it can be applied to any arbitrary duct likely to

be encountered in fluid flow problems. Anderson (Ref. 1) and Davis (Ref. 9) have

developed mapping techniques based on the Schwartz-Christoffel transformation, for

constructing coordinate grids. Anderson's method, which uses polygonal (straight)

elements to represent :he duct contour avoids the problem posed by the poles (sin-

gularities) by integrating along a path just inside the wall boundary. Davis ex-

tended the mapping procedure to include both straight lines and curved line elements.

Another feature of the Davis procedure is the use of a composite finite difference

formula which integrates exactly the poles at each corner point and thus treats the

duct geometry exactly. The Davis method has been applied to internal flow duct

problems by Sridhar and Davis (Ref. 10) in which it was shown that the method pro-

duces second order accurate coordinates and metric coefficients. This procedure

has been selected and adapted in the present investigation to replace the original

ADD code coordinate generator.

Schwartz-Christoffel Transformation

A two step transformation, shown on Fig. 1, is adopted. This first step is

the Schwartz-Christoffel transformation from the duct (z) plane to the upper half

(^) plane.

t,

r.

5
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dz	 M n (3.1.1)

This mapping has a constant M which determines the rotation of the duct relative to

the real axis. The corner angles are denoted by a i and are known. The pole locations

b i in the C plane, however, are not known.

The second step of the transformation is from the upper half (C) plane to a

straight channel in the t plane

t=- ^ In^+i	 (3.1.2)

If t is the complex potential

	

t=s+in	 (3.1.3)

where s is the velocity potential and n is the stream function, then construction of

a cartesian mesh in the t plane represents a conformal mesh in the z plane composed

of the stream function and velocity potential for the plane potential flow through

the duct. The complex conjugate of the potential flow velocity is

	

u -iv= dt	 3. 1.4)

Hence, the magnitude of the potential flow velocity is

	

V= I d z I
	 (3-1.5)

which is the inverse of the metric coefficient.

The mapping shown in Fig. 1 places certain restrictions on the use of the ADD

code algorithm which should be understood at this time. It is noted on Fig. 1 that

the polygon representing the duct is closed at infinity. Thus, the duct is extended

to infinity along the dotted straight lines as shown. It is assumed, in this map-

ping, that the duct inlet is a straight channel with parallel walls, but the duct

exit may be adivergent channel with a divergence angle a e which must be greater than

zero. If one considers the duct alone, this potential flow solution is not the
r.

o:6
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only solution since one is free to impose any boundary condition of the proper type

along the inlet boundary (z l to z N ) and exit boundary (zNLF to ZNLF+1). Therefore,
the mapping predetermines the streamline curvature at the inlet and exit of the duct.

Equation (3.3.1) can be reduced to a form involving only poles and angles

on the duct. This form is Riven by

dZ hi	 a /r N	 -n /,► 	
(3.1.6)^^ _	 ^— a	 I n l ( ^_ b ^ ) '

Integration of the Transformation

The transformation given by Eq. (3.1.5) is singular at each pole b i . Davis

(Ref. 9) has developed a composite finite difference formula by analytically inte-

grating Eq. (3.1.6) in the neightorhood of the poles. This formula is given by

a
_	 + M	 -	 I	

( 
C

N] 1 (CK+i-b^)+I-(^K-bl)-n +i I	 -	 ) (3.1.7)
Z K+I - ZK	

^K +I12 
^K+I/2 1 = 1 I	 -a	 JK+I ^K

C	

+1
( ^ K } I - ^K )	 1►

From Eq. (3.1.2) we have

	

+K+I- ^K ' - 'Yr ^K+1/2 (t K+ I tK)	 (3.1.8)

which may be combined with Eq. (3.1.7) to provide a direct integration to the t

plane. These equations, as demonstrated by Sridhar and Davis (Ref. 10), are second

order accurate and contain no singularities. Therefore, the integration may be

done along the walls which contain the poles. Equations (3.1.7) and (3.1.8) may be

used to integrate along either streamlines or potential lines. Thus, we have

dt—ds+idn
	

(3.1.9)

Bi setting do - 0 the integration is along streamlines and by setting ds - 0

the integration is along potential lines.

A>vm tot ic Solution

The asymptotic solution for far upstream in the straight inlet channel is

obtained as c, - ► m . Equation (3.1.1) reduces to

7	
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dz	 M
d ^ _	 (3.1.10)

Integrating Eq. (3.1.10) and substituting Eq. (3.1.2), we have

z — n MO-0 +z o 	(3.1.11)

Subtracting the lower wall from the upper wall results in

z u - z L = - ",	 (3.1.12)

The height of the duct (see Fig. 2) is given by

	

H = Iz u - z t l	 (3.1.13)

Hence, Eq. (3.1.12) becomes

z u - zL= Hei(B +n/2) 	 (3.1.14)

where	 is the angle between the duct and the real axis. Solving for M we have

H ie	 (3.1.15)M=- V e

Thus, M scales the height and rotation of the duct.

Iteration Procedure

An examination of Eqs. (3.1.6) and (3.1.2), together witt, Fig. 3 shows that the

a i 's and line segments l zci+l - z ci l are known along the walls but the location of

the poles b i or t i are not known. One constant can be fixed arbitrarily so that we

take (z l , b l , t l ) as known. For the moment, let us assume (zN , bN ,
 
t N ) are known.

Then new guesses for the poles b i 's are given by c mparing the lengths of line seg-

ments

8
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Y+I = f Y+l + I =CI - ZCI-I I	 V	 y
f i	 I-I	 Y	 (ti -fP	 i-I)

	

I Z i -Z i-I I	
(3.1.16)

and from Eq. (3.1.2)

blY +1
 = exp [7r (i_f 

v+I)]	 (3.1.17)

Absolute and uniform convergence is established when all points satisfy the condi-

tion

I ZCi - 
zi"I

<E
	

(3.1.18)

The iteration formula given by Eq. (3.1.16) is valid for all points except

tN 1 . This point is determined using the asymptotic solution in the following man-

ner. Let us define for upstream t i ' and t N ', shown in Fig. 4, by the following

relations

'I ° f l-
a- If ► I

(3.1.19)

fNI=fi+I

where o is a parameter chosen to move t ] ' sufficiently far upstream to approximate

the limiting asymptotic solution as t 	 -	 Referring to Fig. 4, the poi-it zN is
determined with known ti's by integrating along the path (z cl to A to zN). Then
the point z l ' is determined by integrating along the path (z 1 to z l '). The point

zN ' is determined using the asymptotic solution (Eq. 3.1.12). Hence,

	

z  - z; 	 7r M1	 (3.1.20)

Thcn the point tN 1 is given by

fNY +I = fN + 
z CN - z N I 

(fN - fN	 (3.1.21)

I Z N -ZN/I

..

9
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A closure error may be defined by integrating along the two paths from (z c1 to

`'NLF+1)' Then,

EC	 I (Z NLF+I ) poth I - (Z NLF+I )path 2 I	 (3.1.22)

Approximate Potential Flow Solution

The iteration algorithm described above converged for most ducts with

arbitrary initial guesses for the poles b i . The rate of convergence (number of

iterations), however, was fcund to depend strongly on the complexity of the duct and

as expected more complex shapes were found to converge more slowly. For the AGT 101

duct described in the next section, convergence could not be obtained with arbitrary

guesses for b i . Hence, it wa.^ decided to obtain an initial guess for b i from an

approximate potential flow solution which could be obtained by geometric construction.

The method of geometric construction is shown on Fig. 5. This consists of con-

structing a mean line z m and normals to the mean line which approximate potential

lines. The three unknown points, zUI J ► zm J' zLI J' shown on Fig. 5, must satisfy
the following relations

Zm,J - Z m,J - II = ^XS	 (3.1.23)

_ I Z UI ,J - Z m,J I
= D	 (3.1.24)

I Z m,J - ZLI,JI

(Z UI J - Z LI J)• (ZMd-Zm,J-0 —0	 (3.1.25)

The parameter Dx s i- any arbitrary length and the parameter D is nominally zero to

determine the midpoint. Equation (3.1.25) sets orthogonality for the mean line and

potential line. Since the duct wall is composed of straight line segments with dis-

continuous slope, D cannot always be zero. Therefore, it was decided to set up an

iteration procedure to find a slope which would minimize D.

The solution to Eq. (3.1.23) through Eq. (3.1.25) is as follcws. Let us define

an angle 6J such that

Zm,J = Z m,J -I + AX s [COs 8 1 + i sin Bj ]	 (3.1.26)

10
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A straight line normal to the mean line is defined by the points Z "'	 and the

point

Z = Z m ^ J 
+ p x s [cos(9^ +'F + i sin(9^ + 2 )^

	
(3.1.27)

A search of the input wall data is made for the intersections zUI J and z
LI V

The parameter D is calculated from Eq. (3.1.24). Then, successive guesses are made

for 0J to minimize D.

The potential flow velocities are calculated by assuming that the velocity on

the mean line satisfies the continuity equation and the velocities on the wall

satisfy the angular momentum equation locally. Hence, we have the following rela-

tions

HJ = I Z UI J - Z LI JI	 (3.1.28)

	

Km J = I d e '	 (3.1.29)
`d Xs J

	

V m,J = I/H i 	 (3.1.30)

where Km' s is the curvature and Vm'j is the velocity on the mean line.

Then define a function d given by

	

i - K m,J /(2Vm J)
_	 (3.1.31)

I - K m, J /(2Vm,J)

and the wall velocities are given by

2

	

VUI,J	 I+ 	 V m,J	 (3.1.32)

2
V UL,J	 I +^ Vm,J	 (3.1.33)

These approximate velocities can le used to integrate Eq. (3.1.5) to obtain the

approximate t i locations for each z i corner in the Z plane. The initial guess for

the b i 's is then obtained from Eq. (3.1.17).

11 o;
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3.2 Endwall Loss Calculation

Struts and guide vanes are treated as a-priori body forces applied to the

turbulent flow equations as described by Barber, et al. (Ref. 6). Empirical cas-

cade data (turning angle and loss) or empirical airfoil data (lift and drag) are

used to calculate the two dimensional blade section forces. The interaction of the

blade boundary laver with the endwall boundary layer can be treated by adding an

endwall loss to the profile loss in the calculation procedure.

The endwall loss coefficient can be defined with respect to the upstream in-

viscid flow by

	

ZEw = (PTI - P T I ) /  2 P
i U?	 (3.2.1)

where P 
T 1 

and PT2 are the gap averaged viscous total pressures upstream and down-

stream of the blade row and (1/2 ^1 1 1 2 ) is the inviscid gap averaged dynamic

pressure upstream of the blade row. It is further assumed that the flow is incom-

pressible and that the endwall boundary layers are thin so that the inviscid

velocity is the velocity at the edge of the boundary layer. Under these conditions,

Eq. (3.2.1) can be written as

/	 ` ,
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We note from Eq. (3.2.2) that at the edge of the endwall boundary z Ew = 0 and at the

wall ZEw - ( ^2e /L le) 2-1.

Hanley (Ref. 13) developed a correlation for the gap averaged boundary layer

profiles in a cascade based on Coles (Ref. 17) two dimensional boundary layer

profiles. However, these correlations are difficult to use. Mager, et al. (Ref. 18)

has shown that if the cross flow component is neglected, a one parameter family of

power law profiles can be used to represent the velocity profiles. This one param-

eter family of profiles can be integrated over the boundary thickness to establish

the relations between displacement thickness, momentum thickness and shape factor,

in terms of the descriptive parameter. Hence, if the shape factor and momentum

thickness are known, then the loss can be determined from the family of velocity

profiles. Papailiou, et al. (Ref. 14) has developed a correlation relating the

upstream and downstream momentum thickness to a pressure rise parameter across the

cascade. This procedure will be used here. Let

U	 y i/n

U = ( s ,	 y < s
	

(3.2.3)
e

= 1	 y >8	 (3.2.4)
Ue
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where the shape factor H and displacement thickness d* are given by

H =(2+n)/n	 (3.2.5)

8/8 *' = I + n	 (3.2.6)

The correlation given by Papailiou is

i

e2 
= ( 2---)'(I+B)5/"/4VR	 (3.2.7)

U44
B= (	 {	 16/5	

U 12 )	 ( 3.2.8)

4.4(U2) l(U2 1-IJ

AVR — U 52 /U S ,	 ( 3.2.9)

An estimate of the friction coefficient can be obtained from the Ludweig-Tillman

law (Ref. 19)

Cf = 0.246 x 10-.678H Re e - .268	 (3.2.10)

where

Re  = p, U, B, 4. ,	 ( 3.2.11)

The shape factors, based on experience of other authors (see literature survey) is

taken to be 1.6 and 2.0, respectively. These shape factors may be considered

empirical constants which may be used to fit the predictions of loss with experi-

mental data.
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At the present time experimental data does not exist to evaluate the endwall

loss model as applied to struts and guide vanes in small radial gas turbine engines.

Therefore, a representative case was calculated to demonstrate the effect of adding

the endwall loss to the profile loss and the results are shown in Fig. 6. This

representative case is for an exit guide vane in a gas turbine exhaust nozzle which

is described in Section 4.1. It is clearly shown in Fig. 6 that the endwall loss

model significantly adds to the total loss of the blade.

1
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3.3 Blade Geometry Calculation

A stacking plane passing through the axis of symmetry (z axis) is defined

as shown in Fig. 7. The x and y axis are then defined in the (r,z) plane by the

location of the origin (rCLO' zCLO) and rotation with respect to the axis of

symmetry 6CL . In this coordination system, the y axis is defined as the stacking

line (irdepenucnt variable) and all blade characteristics are defined as functions

of y. These blade characteristics are the blade centerline location xCL (5'),
blade chord c(y), stagger angle a s (y), thickness to chord ratio t/c(y), and equi-

valent circular arc camber angle ^ c (y). The stagger angle is the angle between

the blade chord line and the axis of symmetry. Hence, the projection of the blade

chord on to the (r,z) ,Mane or stacking (x,y) plane is given by

xC= C Cos Q S	 (3.3.1)

The projection of the chord line is shown in both Figs. 7a and 7b.

The transformation of a point in the stacking (x,y) plane to a point in the

(r,z) plane is given by

r = rCLo + x sin eCL + y Cos e sL	 (3.3.2)

Z = Z CL o + x Cos 9
CL - y sin eCL	

(3.3.3)

This transformation may then be applied to the blade centerline coordinates xCL(y)

to calculate r,, L (y) and z CL (y) in cylindrical coordinates for all of the input data

points defining the blade characteristics. These centerline points must be located

in the ADD code (n,$) coordinate system. A search is then made of the coordinate

file (r(n,$), z(n,$)) for, as an example, the Lth blade data point, to determine

the coordinate grid containing the point as shown on Fig. 8a. With Sj, S j+l' nk'
nk+l known, a bivariate interpolation is used to determine the coordinate point

(n 
LO 

s L). In this manner a table x CL (y), c(y), as (y), t/c(y), Q C (y), rCL(Y)' zCL(y)'

xSCL(y), n(y), s(y) is constructed which completely describes the blade.

As the viscous flow calculation proceeds, the point n k , s j is known and the

problem becomes one of finding the corresponding point in the stacking plane so

that the blade properties are known. This procedure is shown on Fig. $b. The nk

streamline crosses the blade centerline between the nL, nL+l points on the table.

A univariate interpolation is then used to obtain all blade characteristics for the

nkth streamline. The blade leading edge in the (r,z) plane is located by the arc

length distance along the n kth streamline.

15
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xSLE = x SCL - x C 2	 !3.3.4)

Therefore, the point s J , n  is located at

x =[x (S i ,n ) - x	 (n )]/x (n )]
C C 	K	 (3.3.5)

on the blade chord line and the local blade thickness and other parameters can

be determined.

16
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3.4 Interpolation to Arbitrary Line

Let us define an output data line by the coordinate y and its normal x which

lie in a plane passing through the axis of symmetry (z axis). Here the normal

to the (x,y) plane is in the ^ direction, and Fig. 8a may be used as an illustra-

tion. The solution of the flow field at points distributed along y is required.

Clearly, the same transformation and search procedures described in Section 3.3

can be used to produce a table of r(y L ), z(yL), n(y L), s(y L ). To simplify the

search in the solution data, J(y L) and K(y L) are included in the table where (J,K)

is one corner point of the grid surrounding the point yL as shown in Fig. 8a.

With J, K known, the flow field variables can be obtained using a bivariate inter-

polation on (n,$).

There remains the resolution of vector quantities (velocity) and tensor

quantities (stresses). Let us define the unit vector in the (s,n,^) ADD code coor-

dinate system by

	

71= ( k s k
n 
70 )	 (3.4.1)

and the unit vector in the (x,y,Q) by

	

i m = ( i x i y i '^)	 (3.4.2)

The rotation of vectors involves only one angle, 6, so that the direction cosines

are given by

	

Cos e -sin e	 0
a = sin a	 cos e	 o	 (3.4.3)

0	 o	 1

Then, if v is the velocity vector in the (x,y,d) system and u the velocity in the

(s,n,¢) system,

vj — aim u m	 (3.4.4)

Similarly, if i is the stress in the (x,y,$) system and o the stress in the

(s,n,y), then

	

T,1 =aim at i '71m	
(3.4.5)
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We should note that assumptions implicit in the ADD code equations are

01nn = Q ss Q^^ = 0

U ns = O'sn
(7 nSb = O'On
(7so= 'OS =0

(3.4.6)

Wherc ons and and are calculated. If x is aligned with the z axis then (x,y,0

becomes the cylindrical (z,r,m) coordinate system.

18
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3.5 Literature Survey of Gas Turbine Calculations

It is well known that flows in turbomachinery are unsteady, three dimensional,

turbulent, compressible and occur in flow passages that are geometrically complex.

Since the overall problem of predicting the flow in turbomachinery is so compli-

cated, analysis attempts to solve a much simpler problem in which the neglected

complexity is resolved with the use of empirical factors chosen to make predic-

tions agree with experiment. The assumptions used to simplify this problem form

the framework of this literature survey which is presented with the point of view

of extending the ADD code analysis to treat the more complex flows found in turbo-

machinery. These assumptions are:

1. Quasi-steady flow assumption

2. Quasi-two dimensional flow assumption

3. General-zed boundary layer assumption

4. End-wall blade force assumption

5. Inviscid secondary flow assumption

6. Turbulent mixing length assumption

The quasi-steady flow assumption states that the flow may be considered steady

in time when examined in a coordinate system rotating with the angular velocity of

the blade. The work done by a compressor or turbine, when examined in a stationary

coordinate system, is done by the time varying pressure field. When the appropriate

transformation based on the quasi steady flow assumption is used, the time varying

pressure field is converted to a spatially varying pressure field and the Euler

equations for turbomachinery are derived. This assumption accounts for the work

done by the compressor or turbine but does not account for unsteady effects such

as a compressor surge. However, unsteady flow even when considered in the quasi-

steady frame of reference still has significant effects, as shown by Dring et al.

(Ref. 20), which may have to be taken into account by empirical means. The ADD

code analysis and nearly all other analyses use the quasi-steady flow assumption

to simplify the analysis.

The quasi two dimensional flow assumption is used to reduce the geometric

complexity of the gas turbine passage. It states that the three dimensional flow

in the turbomachines can be built up by considering two dimensional flow in three

weakly interacting planes. Although three dimensional flow field calculations of

the type pioneered by Wu (Ref. 21) are currently under development, these are

generally inviscid and hence neglect phenomena which a designer is most interested

such as compressor loss and efficiency. The three surfaces may be called the

meridional plane surface, the cascade plane surface, and the secondary flow or

Trefftz plane surface. The meridional plane surfaces are of two types: 1) a curved

surface midway between adjacent blades (S1 surface of Wu), or 2) a meridional plane

surface (r, z plane) obtained by circumferentially averaging the flow equations.

Almost all current design methods use the second type of surface. Inviscid flow
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field solutions in the meridional plane are generally of the matrix through flow

type of analysis initiated by Marsh (Ref. 22) and Wu (Ref. 23) or of the streamline

curvature type developed by Mellor (Ref. 24), Smith (Ref. 25), and Novak (Ref. 26).

Gap averaging of the flow equations to obtain the flow in the meridional plane

reduces the spatially varying pressure field to a-priori body forces which are

treated by empirical means. The inviscid streamline analysis, such as those

described above, incorporate the effects of endwall boundary layer growth using

empirical blockage factors. The ADD code uses the meridional plane approach with

body forces computed a-prior.{ to represent the blades. However, since it is a

viscous solution, endwall blockage is treated directly by solution of the boundary

layer flow rather than treated indirectly by empirical factors.

The body forces are determined by examining the flow in the cascade plane which

is obtained by unrolling a cylindrical surface passing through the compressor or

turbine. The flow in this plane generates the spatially varying pressure field

in quasi-steady flow and thus produces work. A large body of literature exists

on the analysis of cascade flow or the empirical representation of cascade flow.

(See as an example Johnson and Bullock, Ref. 11). The ADD code uses empirical

cascade correlations coupled with an inviscid flow analysis, which with known

streamline curvature, reduces to the method of Novak (Ref. 26) to calculate the

body force for use in the reridional plane calculation. Although the cas-

cade plane concept is useful for analyzing flows in axial flow turbomachinery where

the radial component of the flow is small, it is not useful for analyzing flows

in radial flow turbomachinery where the radial component is large. For these types

of flows, three dimensional analysis may be required. However, one simplified

analysis, which could be developed within the existing ADD code framework, is the

solution of the gap averaged inviscid flow between two meridional plane (Sl) sur-

faces. These S1 surfaces would be the mean surface passing through adjacent blades

and a condition of flow tangency would be the additional boundary condition suffi-

cient to establish a solution.

The third surface or Trefftz plane is used to analyze the secondary flow

through the gas turbine passage. This plane is approximately normal to the mean

flow direction. Thus, the secondary flow velocity components are the gapwise and

spanwise components of velocity. Inviscid vorticity transport theories, which

shall be discussed later, are used to solve for the flow in the Trefftz plane and

have been moderately successful in predicting secondary flow overturning in the

end wall region.

The generalized boundary layer assumption is applied to the gap averaged equa-

tions of motion in the meridional plane. It states that the viscous forces are

small compared to the dynamic forces and blade forces except in a thin region near

the end walls and that this region is small compared to the annulus height.

With this assumption the flow field can be separated into a core flow and an end-

wall boundary layer flow. The core flow is in v iscid and rotational with blade

forces which do work. The end wall boundary layers are viscous flows which deter-

mine the effective blockage. The boundary layer equations for the gap averaged
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flow have been derived by Railly and Howard (Ref. 27) and Mellor and blood (Ref. 28).

Horlock and Perkins (Ref. 29) present a fairly complete r;erivation and summary of

these approaches to solve the end-wall boundary layer flow. In all cases a momen-

tun integral approach is used to solve the equations. Neglecting for now tLe

problem of representing the blade force and other nonaxisymmetric or three dimen-

sional effects, the momentum integral approach requires a great amount of empirical

data correlation to represent the profile shape for both the axial and tangential

boundary layer equations as well as a closure equation to get the turbulent wall

shear stress. Consequently, a number of ad-hoc assumptions are made to close the

problem and many boundary layer theories have been developed which will be dis-

cussed in the next paragraph. The ADD code equations for both the streamwise and

tangential flow are solved over the whole flow field by numerical methods which

need no data correlations for profile shape. Consequently, as shown by Barber,

et al. (Ref. 6), remarkably good end-wall boundary layer profiles can be obtained

for both the streamwise and crosswise flow through an inlet guide vane flow passage.

The end-wall blade force assumption was stated explicitly by Mellor (Ref. 28)

as "the force exerted by the blade in the end-wall region is identical to that ob-

tained if there were no end-walls". In terms of the ADD code formulation, this

assumption may be restated as "the force exerted by the blades on the viscous flow

is the same as the force exerted by the blades on the inviscid flow". Although

clearly an over-simplification, there is some evidence that it is at least approxi-

mately true (see Mellor, Ref. 28). The treatment of the blade force terms, together

with the general closure problem introduced by the momentum integral approach has

resulted in a large number of analytical solutions. Thus, we have a method :,y

Horlock and co-workers (Refs. 29 through 31), Hirsch and co-workers (Refs. 32

through 36), and finally by Papailiou and co-workers (Refs. 37 through 40). Hirsch

and co-workers have generally followed along the lines originally suggested by

Mellor (Refs. 28, 41, 42) using blade defect forces. Papailiou and also Horlock

have followed paths which use the results of secondary flow analysis. Two con-

clusions may be drawn from a survey of this literature. First, the blade defect

forces are important in limiting the growth of the end-wall boundary layer in a

multistage compressor. Second, secondary flow effects such as the passage vortex

produced Oy tip leakage limits stage efficiency and work output and should be accounted for.

The major contribution of the blade defect force are additional losses, over

and above blade profile loss. This loss is produced by three dimensional corner

stall. Empirical correlations for predicting end-wall losses have been developed

by Hanley (Ref. 13), Papailiou, et al. (Ref. 14), and Koch (Ref. 15). The corre-

lations developed by Papailiou have been incorporated into the ADD code. Predic-

tions of tip clearance effects using secondary flow theory generally follow along

the lines proposed by Lakshminarayana (Ref. 43). These effects are not currently

modeled in the ADD code.

V.
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Secondary flows which produce spanwise and gapwise velocity components are

generally treated using inviscid vorticity transport theory. These theories assume

a weak interaction between the primary or through flow and the secondary flow.

This assumption is valid if the turning angles are small and/or the vorticity is

small. Under these conditions inlet vorticity produced by the end-wall boundary

layer is convected along the known primary flow streamlines and is thus known at

the exit plane. Secondary vorticity, defined as the component of vorticity in the

streamwise direction, is produced by rotation of the inlet vorticity vector. Vor-

ticity produced at the wall boundary and diffusion of vorticity are neglected.

The known secondary vorticity distribution at the blade exit plane, together with

a continuity relation, is sufficient to solve for the gapwise and spanwise secondary

flow in the Trefftz plane. This method was pioneered by Squire and Winter (Ref. 16)

and refinements have been developed by Hawthorn (Refs. 44 through 47), by }lorlock

and Laksminarayana (Refs. 48 and 49) and finally by Smith (Ref. 50). This approach

has been quite successful in predicting secondary flow endwall overturning but has

been less successful in predicting endwall loss since loss is basically a viscous

phenomena.

Although secondary flow losses are generally small, secondary flow mixing can

be quite .-ignificant. Adkins and Smith (Ref. 51) have developed a secondary flow

mixing model which predicts observed flow conditions which cannot be explained in

any other manner. This approach treats the secondary flow as a large turbulent

eddy on the scale of the blade gap. The spanwise and gapwise velocities produced

by this large scale eddy contribute a net exchange of momentum and energy through

Reynolds stress type terms which are obtained from the gap averaged equations of

motion. Adkins and Smith show that these Reynolds stress type terms can be treated

by gradient diffusion terms in which an effective mixing coefficient, in place of

an eddy viscosity, is a function of the secondary flow parameters. This analysis

of Adkins and Smith can be incorporated into the ADD code since unlike th.^ other

theories it covers the whole flow field from wall to wall and could substantially

upgrade the ADD code analysis to treat more complex gas turbine flows.

t he last assumption is a turbulent mixing length assumption. All of the end-

wall boundary la yer theories cited above assume that the turbulence in the endwall

boundary layer is the same as the turbulence in a two-dimensional boundary layer.

Thus, the closure equations developed for two dimensional boundary layers are used.

The ADD code makes a similar assumption and uses either an algebraic turbulence

model or a two equation turbulence model (Anderson and Edwards, Ref. 8). Although

such an assumption may be valid in any given plane, it is not necessarily valid for

the gap averaged flow. However, the various solutions of Papailiou, Hirsh, and

Horlock citoo above appear to give reasonable results for the momentum integral equa-

tions and the res+ilts of Barber, et al. (Ref. 6) appear also to give a reasonable

representation of the turbulence effects.

r
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In summary, it can be seen that the ADD code formulation of the equations of

motion which describe the flow through turbomachiner y is compatible with the exist-

ing literature on the subject. These equations are quasi-steady flow equations for

the gap average flow in the meridional (r,z) plane. Body forces are calculated,

a-pr2ori, using empirical correlations coupled to an inviscid flow field analysis

which reduces to the method of Novak (Ref. 26) when streamline curvature is known.
The viscous equations used in the ADD code are essentially identical to the end-

wall boundary layer equations derived by Mellor (Ref. 28) and Horlock (Ref. 29) and

differ only in that they apply to the whole flow field and not to just the endwall

region. The turbulence models used in the ADD code and endwall boundary layer

analysis of Mellor and Horlock are also equivalent. Since numerical m°tiiols are

used to solve the equations rather than momentum integral methods, data correla-

t ins for profile shape are not required and remarkably good solutions for the end-

wall boundary layers 'r ave been obtained by Barber et al. (Ref. 6). In particular,

the endwall overturning can be predicted. A major component of the blade defect

force (see Mellor, Ref. 28) is the corner loss. This corner lose is partially

accounted by the loss model suggested in Section 3.2 although it has not been

verified by comparison with data. Two areas of possible improvement to the ADD

code remain. This first is the incorporation of a secondary flow mixing model such

as suggested by Adkins and Smith (Ref. 51). The second is the prediction of blade

forces in radial flow compressors and turbines.
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4.0 RESULTS

4.1 Comparison of Coordinate Generator

The original coordinate generator used in the ADD code was developed by

Anderson (Ref. 1)	 This grid generation method is based on a conformal mapping

procedure using the Schwartz-Christoffel transformation. Integration across sin-

gular points (poles) at each corner was avoided by choosing a boundary a small

distance inside the duct. The integration itself was done using a fourth order

Rung-Kutta formula. The method of Davis (Ref. 9), also based on the Schwartz-

Christoffel transformation, treats the singular points (poles) using a composite

integration formula which is second order accurate and is exact across the poles.

Use of this composite integration formula permits integration to take place along

the wall boundaries and eliminates the need for the approximation used by Anderson.

In addition to improved numerical integration formula, an improved closure procedure

was developed by integrating from one wall of the duct to the other wall along a

potential line. This new closure procedure permits the construction of coordinates
for ducts with arbitrary ccntours which may turn more than 90 degrees.

A comparison of the two grid generators was made by choosing a simple en-ine

exhaust nozzle, calculating the coordinates using both the Anderson and Davis methods,

and then calculating the viscous flow through the nozzle using the ADD code viscous

solver. A stretching function suggested by Roberts (Ref. 52) was used to distort

the geometric mesh in order to have an adequate distribution, of points near the

walls for a viscous flow calculation. Each grid generator calculated a geometric

mesh consisting of 50 equally spaced streamlines and 80 potential lines as shown

in Fig. 9. The new generator obtained uniform and absolute convergence with a

tolerance of 10 - " in 7 iterations. The computational (CPU) time on a UNIVAC

1100/81A system was 15 112 minutes for the new grid generator and 15 minutes for

the old generator.

The two grid generators produced essentially identical results for the wall

boundaries as can be seen in Figs. 10 and 11 which are comparisons of the inner and

outer wall coordinates for the exhaust nozzle calculated by both methods. This

was expected since the two methods are based on the Schwartz-Christoffel transforma-

tion. However, as can be observed from Figs. 12 and 13, which are comparisons of

the metric coefficients along the inner and outer walls using both grid generators,

the new generator calculates smoother metric coefficients.
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Numerical meshes (Fig. 14) consisting of 80 nonuniformly spaced streamlines

and 80 potential lines were created by interpolation from the 50 x 80 uniform

mesh generated by the two grid generators an.i were used in the ADD code flow calcul-

ations. The results of these two f)ow analyses are given in Figs. 15 through 18.

A comparison of the calculated resLIts for the static pressure along the inner

wall using; the two grid generators is given in Fig. 15. A similar comparison for

the outer wall is given in Fig. 16. From Fig. 15 it is apparent that the calcula-

tion using the new grid generator produces a smoother pressure distribution than

that produced by the old grid generator. Otherwise the two analyses have nearly

identical pressure distributions along the inner wall. It should be noted that the

drop in pressure from Z/^ = 0.6 to Z/Z = 2.0 is due to the exit guide vane (EGV)

blockage. A comparison of the skin friction, C f , along the inner and outer walls

are shown in Figs. 17 and 18, respectively, for the two grid generators. The large

jump in the friction coefficient Z/Q = 0.6 is also produced by the EGV strut

leading edge influence. The "kinks" observed in the skin friction are produced by

the rapid increase in skin friction produced by the strut leading edge and subse-

quent adjustments of the flow. These "kinks" can be removed by a finer grid.

The following conclusions were reached for this evaluation of the two grid

generation procedures: (1) the computation time is approximately the same using

either method, (2) both methods produce nearly identical metric coefficients except

that the Davis method produces smoother metric coefficients in regions of large

curvatures, and (3) the Davis method is an improvement over the Anderson method

and thus was incorporated into the ADD code for use in the present investigations.

t
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4.2 AGT101 Turbine Inlet Duct

The viscous turbulent flow thruugh the AGT101 turbine inlet duct, with struts,

was calculated using inlet flow conditions supplied by NASA-Lewis Research Center.

The computational mesh and geometry used to represent the AGT101 turbine inlet duct

in the ADD code analysis is shown on Fig. 19. This turbine inlet duct is a transi-
tion duct from the combustor exit plane to the turbine inlet plane and contains three

struts arranged circumferentially around the duct. The plane view of these struts

is shown in Fig. 19. The blunt stagnation point at the axis of symmetry is replaced
by a faired streamline to bypass the need to solve stagnation point flow since the

equations used in the ADD code are singular at this point.

The duct wall coordinates were obtained by reading coordinate points directly

from an engineering drawing. These input points were then least squares spline

smoothed using an existing ADD code option and then interpolated to 100 equally

spaced arc length distances along the wall. The three struts were support struts

only and had no airfoil designation. Their profile coordinates were obtained from

engineering drawings and input into the code using the arbitrary airfoil shape op-

tion. The cord, maximum thickness and other geometric properties were also obtained

from engineering drawings.

Initial flow conditions specified by NASA personnel were uniform total tem-

perature at 441.3 Kelvin deg and uniform total pressure at 1,47 x 10 5 N/m 2 with a
corrected weight flow of .1528 kg/sec. These conditions are sufficient to set

up all flow variables at the initial station which satisfy the global continuity

equation, normal momentum equation, and equation of state. The analysis was started

downstream of the hub stagnation point to bypass the stagnation point solution.

Turbulent boundary layers were assumed and a low Reynolds number turbulence model

option available in the ADD code was used. I'_ was found that the Reynolds number

per inch was so low that a turbulent boundary layer start using a momentum thick-

ness estimated from a stagnation point solution was not possible. Since a laminar

turbulent transition model is not currently available in the ADD code, the initial

station was chosen further downstream and the momentum thickness increased. At

this initial station, the Reynolds number based on momentum thickness was 400.

A geometric mesh was calculated by the new coordinate generator consisting

of 50 equally-spaced streamlines and 100 potential lines. Uniform and absolute

convergence of the conformal mapping solution was obtained to a tolerance of

1.5x10 -4 in 13 iterations. The computational CPU time on a UNIVAC 1100/81A
operating system was 29.5 minutes. The computational mesh shown on Fig. 19,
consisting of 99 unevenly spaced streamlines and 100 potential lines, was
obtained by linear interpolation from the 50 x 100 uniform mesh in order to provide
adequate resolution of the flow in the wall boundary layers.
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Th. , results of the flow analysis of the ACT101 turbine inlet duct are shown

on Figs. 20 and 21. These figures show a comparison of the calculated static

pressure along the hub and shroud walls with experimental data. The solid line

on Figs. 20 and 21 is the solution obtained from the viscous solver in the ADD

code and the dashed line is the solution obtained from the approximate inviscid

solver in the ADD code analysis.

From Figs. 20 and 21 it is observed that the results of the viscous solver

agree quite well with the experimental data. The close agreement between the

results of the viscous solution and the approximate inviscid solution, shown

on Figs. 20 and 21 indicate that in this case the effect of blockage due to the

boundary laye:	 very slight except near the maximum duct height. The ADD code

viscous solution did not predict separation in the AGT101 turbine inlet duct for the
specified flow conditions. The computational CPU time was 11.6 minutes for the

complete flow calculation. Of this time, 1.2 minutes was required for the

approximate inviscid solution on a 85 x 99 mesh and 10.4 minutes was required

for the viscous solution on a 254 x 99 mesh.

The test case demonstrates that the current approach is capable of representing

the turbulent flow through a complex duct shape that turns almost 180 degrees and

contains struts or guide vanes. Two areas for future enhancement of the approach

have been identified. First, it is noted that the laminar to turbulent transition

model would be beneficial and second, incorporation of a stagnation point capability

would relieve a current approximation used for such inlet geometries.
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4.3 ACT101 Turbine Exhaust Diffuser

The performance of the AGT101 turbine exhaust diffuser (see Fig. 22) was

measured on a test stand in which the turbine exhaust was simulated using

inlet guide vanes. These inlet guide vanes (IGV) were a set of 16 blades with a 27

deg circular arc camber which were used to impart swirl to the flow. The projection

of these inlet guide vanes onto the (r,z) plane is shown on Fig. 21. Axial flow

enters the inlet guide vanes and leaves with a swirl angle of approximately

27 deg. This swirling flow enters the diffuser at the diffuser inlet station

and is turned radially outward to exhaust at the diffuser exit plane.

The computational mesh, shown on Fig. 22, consists of 100 streamlines and

100 streamwise stations where the streamlines are packed near each wall to provide

grid resolution for the boundary layer calculation. This computational mesh was

interpolated from a 50 x 100 uniform mesh which was calculated using the algorithm

described in Sect. 3.1. Computational time on the Univac 1100/81A computer was
approximately 15 min. to obtain a convergence level of 10-4.

Inlet conditions provided by NASA consisted of uniform total pressure and

temperature at standard atmospheric conditions. A corrected weight flow

(.667 leg/sec) was provided to set tie inlet Mach number. However, this weight

flow established a Mach number at the IGV exit plane which was not consistant

with the measured wall static to total pressure ratio. A guess for the actual weight

flow (.789 kg/sec) was made in an attempt to establish the correct initial con-

ditions. In actual practice the weight flow should be established by the ambient

pressure at the diffuser exit.

An overall view of the solution for the flow through exhaust diffuser is

shown on Fig. 23. This is a plot of the streamwise velocity distribution across

the duct at successive streamwise stations. The boundary layer growth on the

hub and shroud walls is vividly illustrated. On the hub wall the boundary layer

grows slowly as the flow is decelerated by the initial portion of the turn.

Then the boundary layer thickness decreases as it recovers from the turn.

Finally the boundary layer grows slowly as it is decelerated in the radial

diffuser. On the shroud wall, the boundary layer is initially accelerated as

the flow enters the turn. Then the boundary layer grows rapidly as the flow

recovers from the turn and continues to decelerate in the radial diffuser.

At the exit, the shroud boundary layer is nearly separated and occupies almost

one half the exit flow. The corresponding behavior of the wall friction

coefficient is shown on Fig. 24 and is consistent with the varying streamwise

pressure distribution. In particular it is noted that near the exit, the shroud

boundary layer is nearly separated.
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A more detailed plot of the calculated flow field is shown on Figs. 25 and

26. Fig. 25 shows a comparison of the inlet and exit streamwise velocity profiles.

At the inlet, the flow is uniform with thin boundary layers. At the exit, the

shroud wall shows a large nearly separated boundary layer. The flow angles at

the IGV trailing edge and at the diffuser exit are shown on Fig. 26. At the

IGV trailing edge, the core flow outside the boundary layer has a flow angle

varying from approximately 28 deg down to approximately 18 degrees. Inside the

hub boundary layer the flow angle increases rapidly to almost 50 deg. and inside

the shroud boundary layer the flow angle increases to approximately 30 deg. This

increase in flow angle in the wall boundary layers is known as "flow overturning"

and is a well known phenomena predicted by secondary flow theory (see Refs. 44

through 50). The flow angle distribution at the exit is more interesting however.

Through the hub boundary layer and the core flow, the flow angle has been reduced

to less than 10 deg. This is caused by conservation of angular momentum. As the

swirling flow moves outward in the radial diffuser, its tangential velocity must

be correspondingly reduced. In the shroud boundary layer, however, the flow angle

increases to nearly 90 deg. This is caused by the nearly separated streamwise

boundary layer. At separation the flow angle would be 90 deg. because the stream-

wise component of stress is zero while the tangential component of stress is

finite.

A comparison of the calculated wall pressure distribution with the measured

pressured distribution on both the hub and shroud walls is shown on Fig. 27.

The agreement with experimental data is quite good considering the complexity

of the flow field and the approximations necessary for estimating weight flow and

IGV performance characteristics. The overall flow is quite involved and can be

explained in the following manner. At the inlet upstream of the IGV, the flow is

uniform so that the hub and shroud static pressures are the same. Downstream of

the inlet guide vane, the flow is swirling and normally the shroud static pressure

should be greater than the hub pressure to establish radial equilibrium. However

because the flow is starting to turn, an opposing pressure gradient over comes

that set—up by the swirling flow. Through the turn, the hub static pressure is

greater than the shroud pressure. In the radial diffuser, the static pressures

are nearly the same. (note that the surface length differs on the two walls.)

This pressure history clearly shows why the shroud boundary layer is nearly

separated while the hub boundary layer is not.

Effects to be examined more closely are: 1) free stream turbulence and the

results from using different turbulence models (Ref. 8), 2) axisymmetric streamline

curvature corrections as developed in (Ref. 8), and 3) nonaxisymmetric mixing effects

such as those described in Ref. 51.
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5.0 CONCLUSION AND RECOMMENDATIONS

A new coordinate generator based on the work of Davis (Ref. 9) has been
incorporated into the ADD code and has been shown capable of calculating

coordinates for small gas turbine ducts which turn more than 90 degrees. This
new coordinate generator has been shown to produce improved results over the

previous grid generator developed by Anderson (Ref. 1). Turbulent viscous flow

calculations have been demonstrated for small gas turbine ducts with struts and

guide vanes using a generalized strut geometry and blade force calculation

procedure. The computed results for pressure distribution compare favorably

with experimental data.

A literature survey on calculation procedures used in gas turbine technology

has demonstrated compatability with the ADD code formulation and has indicated

several areas for future improvement. These areas are 1) incorporation of a

secondary flow mixing model to account for three dimensional effects due to

corner flow and tip leakage and 2) development of a blade force calculation

procedure for radial flow turbines and compressors. The calculated test cases

also indicate that a laminar turbulent transition model and stagnation point

solution would De useful.
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7.0 LIST OF SYtBOLS

b i Poles in Schwartz-Christoffel transformation

c Blade chord	 (m,	 ft)

Cf Friction coefficient

h Metric coefficient	 (m,	 ft)

H Duct height	 (m,	 ft)

H Shape factor 6*/0

i 3 -1

i,k Unit vectors

M Rotational constant Schwartz-Christoffel transformation

n,s,Q ADD code coordinates

P T Total pressure	 (n/m 2 ,	 lbf/ft2)

r,z," Cylindrical	 coordinates

Rev Reynolds number based on momentum thickness

t - s+in Complex variable in t plane, 	 complex potential

t Blade	 thickness	 (m,	 ft)

u,v Potential	 flow veloc:tles	 (m/sec,	 ft/sec)

u ' v Velocity v e ctors	 (m/sec,	 ft./sec)

U Magnitude of viscous flow velocity 	 (m/sec,	 ft/sec)

Us Streamwise velocity	 (m/sec,	 ft/sec)

V Magnitude of potential flow velocity 	 (m/sec,	 ft/sec)

i
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LIST OF SYMBOLS (Cont'd)

x0.m

xs

y

z - x+iy

zEW

ai

a
e

as

d

d ^'

E

EC

a

0

K

u

P

a

0

i

0c

Blade coordinates

Arc length along coordinates (m, ft)

Distance from wall (m, ft)

Complex variable in z plane (duct plane)

End wall loss coefficient

Schwartz-Christoffel wall angle

Duct exit divergence angle (deg)

Cascade stagger angle (deg)

Boundary layer thickness (m, ft)

Displacement thicknesF (m, ft)

Error

Closure error

Complex variable in ^ plane

Angle with respect to real axis (deg.)

Momentum thickness

Streamline curvature (1/m, 1/ft)

Viscosity

Density (kg/m 3 , slugs/ft3)

Stress tensor

Stress tensor

Circular arc camber (deg)

tea.► J	 .	 - . f7*^
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LIST OF SYMBOLS (Cont'd)

Subs crip is

CL	 Blade center line

e	 Boundary layer edge

J,K	 Grid indices

L,U	 Lower/upper wall

LI,UI	 Intersection lower/upper wall

M	 Mean line

1,2	 Upstream/downstream station

Superscript

ti	 Inviscid flow
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